في الرياضيات، مُبرهنة فيثاغورس وتُعرف شهرة باسم نظرية فيثاغورس هي علاقة أساسية في الهندسة الإقليدية بين أضلاع المثلث قائم الزّاوية. تنص على أنّ مجموع مربعي طولي ضلعي الزاوية القائمة مساوٍ لمربع طول الوتر. يُمكن كتابة النّظرية كمعادلة تربط بين أطوال أضلاع المثلث ا ب جـ. سميت هذه المبرهنة هكذا نسبةً إلى العالم فيثاغورس الذي كان رياضياً وفيلسوفاً وعالم فلك في اليونان القديمة.
شرح نظرية فيثاغورس من خلال مثلث قائم الزاوية
يتألف المثلث القائم الزاوية من ضلعين يسميان بالضلعين القائمين (متعامدين مع بعضهما)، يوجد ضلع ثالث أطول منهما وهو ما يسمّى بالوتر. يتم تقابل الضلعين القائمين عند زاوية قائمة (أي أن مقدارها 90)، يكون الوتر مقابلاً لتلك الزاوية القائمة، الشكل التالي هو عبارة عن شكل نموذج للمثلث القائم الزاوية مع توضيح الضلعين القائمين والوتر
قانون فيثاغورس:
اثبات نظرية فيثاغورس
يُمكن إثبات نظرية فيثاغورس بعدد لا نهائي من البراهين، وقد نشر عالم الرياضيات إليشا سكوت لوميس (بالإنجليزية: Elisha Scott Loomis) كتابه "فرضيّة فيثاغورس" عام 1927م، والذي قدّم فيه 370 برهاناً مختلفاً للنظريّة صُنّفت في أربعة أقسام رئيسة هي: قسم الجبر الذي يربط جوانب المثلث، وقسم الهندسة الذي يقارن بين المساحات، وقسم الحركية أو الديناميكيّة الذي يرتبط بخصائص القوة والكتلة، وأخيراً المتجهات.
احلام سحاري
تعليقات
إرسال تعليق